Welcome to DU! The truly grassroots left-of-center political community where regular people, not algorithms, drive the discussions and set the standards. Join the community: Create a free account Support DU (and get rid of ads!): Become a Star Member Latest Breaking News General Discussion The DU Lounge All Forums Issue Forums Culture Forums Alliance Forums Region Forums Support Forums Help & Search

eppur_se_muova

(36,263 posts)
Sun Jun 24, 2012, 12:37 AM Jun 2012

Tin-100, a doubly magic nucleus

A few minutes after the Big Bang the universe contained no other elements than hydrogen and helium. Physicists of the Technische Universitaet Muenchen (TUM), the Cluster of Excellence “Universe” and the Helmholtz Center for Heavy Ion Research (GSI) have now succeeded in producing tin-100, a very instable yet important element for understanding the formation of heavier elements. The researchers report on their results in the current edition of the scientific journal Nature.

Stable tin, as we know it, comprises 112 nuclear particles – 50 protons and 62 neutrons. The neutrons act as a kind of buffer between the electrically repelling protons and prevent normal tin from decaying. According to the shell model of nuclear physics, 50 is a “magic number” that gives rise to special properties. Tin-100, with 50 protons and 50 neutrons, is “doubly magic,” making it particularly interesting for nuclear physicists.

Shooting xenon-124 ions at a sheet of beryllium, the international team headed by physicists from the TU Muenchen, the Cluster of Excellence Origin and Structure of the Universe and the GSI in Darmstadt succeeded in creating tin-100 and analyzing its subsequent decay. Using specially developed particle detectors, they were able to measure the half-life and decay energy of tin-100 and its decay products. Their experiments confirmed that tin-100 has the fastest beta decay of all atomic nuclei, as previously predicted by theoretical physicists.

A repeat of the experiment is slated for the near future at the RIKEN research center in Japan. The beam intensity at RIKEN is higher in the mean time, allowing even more precise measurements. The aim of the research work is to improve the understanding of processes in the formation of heavy elements during explosions on the surface of compact stars. In addition, the researchers hope to draw conclusions on the neutrino mass from the measurements.

This work was supported by the BMBF, by the GSI, by the DFG-Cluster of Excellence Origin and Structure of the Universe, by the EC within the FP6 through I3-EURONS and by the Swedish Research Council.

http://www.tum.de/en/about-tum/news/press-releases/long/article/29947/
http://www.nature.com/nature/journal/v486/n7403/full/nature11116.html

2 replies = new reply since forum marked as read
Highlight: NoneDon't highlight anything 5 newestHighlight 5 most recent replies
Tin-100, a doubly magic nucleus (Original Post) eppur_se_muova Jun 2012 OP
Very cool! longship Jun 2012 #1
Weird. I didn't think that was possible. HopeHoops Jul 2012 #2
Latest Discussions»Culture Forums»Science»Tin-100, a doubly magic n...