Welcome to DU! The truly grassroots left-of-center political community where regular people, not algorithms, drive the discussions and set the standards. Join the community: Create a free account Support DU (and get rid of ads!): Become a Star Member Latest Breaking News General Discussion The DU Lounge All Forums Issue Forums Culture Forums Alliance Forums Region Forums Support Forums Help & Search

Bill USA

(6,436 posts)
Wed Oct 16, 2013, 06:55 PM Oct 2013

UCLA engineers develop new process for making biofuels, offers possible 50% increase in yield

here's the complete title:

UCLA engineers develop new metabolic pathway for more efficient conversion of glucose into biofuels; possible 50% increase in biorefinery yield
http://www.greencarcongress.com/2013/10/20131001-liao.html#more

Researchers at UCLA led by Dr. James Liao have created a new synthetic metabolic pathway for breaking down glucose that could lead to a 50% increase in the production of biofuels. The new pathway is intended to replace the natural metabolic pathway known as glycolysis, a series of chemical reactions that nearly all organisms use to convert sugars into the molecular precursors that cells need. The research is published in the journal Nature.

Native glycolytic pathways—a number of which have been discovered—oxidize the six-carbon sugar glucose into pyruvate and thence into two-carbon molecules known acetyl-CoA for either further oxidation or biosynthesis of cell constituents and products, including fatty acids, amino acids, isoprenoids and alcohols. However, the two remaining glucose carbons are lost as carbon dioxide.

Glycolysis is currently used in biorefineries to convert sugars derived from plant biomass into biofuels, but the loss of two carbon atoms for every six that are input is seen as a major gap in the efficiency of the process. The wasted CO2 leads to a significant decrease in carbon yield, the researchers observed, which results in a major impact on the overall economy of biorefinery and the carbon efficiency of cell growth. However, re-fixing the lost CO2 would incur energetic and kinetic costs.

While it is theoretically possible to split sugars or sugar phosphates into stoichiometric amounts of acetyl-CoA in a carbon- and redox-neutral manner, resulting in maximal yields, no such pathways are known to exist in nature.
(more)

Latest Discussions»Issue Forums»Environment & Energy»UCLA engineers develop ne...