Welcome to DU! The truly grassroots left-of-center political community where regular people, not algorithms, drive the discussions and set the standards. Join the community: Create a free account Support DU (and get rid of ads!): Become a Star Member Latest Breaking News General Discussion The DU Lounge All Forums Issue Forums Culture Forums Alliance Forums Region Forums Support Forums Help & Search

OKIsItJustMe

(19,938 posts)
Fri Apr 28, 2017, 07:17 PM Apr 2017

NRL enables a family of zinc-based rechargeable batteries, safer than lithium



http://www.sciencemag.org/news/2017/04/new-battery-could-save-your-cellphone-going-smoke
[font face=Serif][font size=5]This new battery could save your cellphone from going up in smoke[/font]

By Robert ServiceApr. 27, 2017 , 2:15 PM

[font size=3]Lithium-ion (Li-ion) batteries are everywhere these days: laptops, cars, power tools, and cellphones, including Samsung’s infamous smoldering Galaxy Note 7. Now, researchers have come up with a new way to prevent these rechargeables from going haywire—a zinc-nickel battery that provides nearly the same electrical jolt, but not the fire risk of Li-ion cells. The new batteries—still in development—could one day power devices as varied as consumer electronics and hybrid cars.

Zinc batteries are surprisingly old-school. Standard nonrechargeable alkaline batteries have one electrode of zinc and another of manganese dioxide. They’re safe because they contain a nonflammable, water-based electrolyte that helps ferry charges through the battery. Lithium cells instead require a flammable organic electrolyte to prevent side reactions that can kill the batteries. Scientists have come up with all sorts of schemes to stop those cells from catching fire, like adding flame retardants.

They’ve also searched for ways to make zinc-based batteries rechargeable. In addition to being safer, zinc is far more abundant, and thus cheaper, than lithium. But previous zinc-based rechargeables suffer from a major drawback: Repeated cycles of charging and discharging cause zinc atoms to pile up on one of the electrodes. That causes the growth of “dendrites,” tiny zinc spears that can pierce other parts of the battery, causing it to short-circuit and fail.



Rolison and her colleagues are now doing extensive testing on their zinc rechargeables. In the new study, published today in Science, they find that the batteries can complete more than 100 charge and discharge cycles when designed to provide roughly the same amount of energy as Li-ion cells. In a separate design common in hybrid vehicles—in which a small amount of power is discharged and then instantly recharged—the researchers showed that their batteries could cycle up to 50,000 times with no dendrite formation.

…[/font][/font]
Latest Discussions»Issue Forums»Environment & Energy»NRL enables a family of z...